n^2-45=18

Simple and best practice solution for n^2-45=18 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for n^2-45=18 equation:



n^2-45=18
We move all terms to the left:
n^2-45-(18)=0
We add all the numbers together, and all the variables
n^2-63=0
a = 1; b = 0; c = -63;
Δ = b2-4ac
Δ = 02-4·1·(-63)
Δ = 252
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{252}=\sqrt{36*7}=\sqrt{36}*\sqrt{7}=6\sqrt{7}$
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{7}}{2*1}=\frac{0-6\sqrt{7}}{2} =-\frac{6\sqrt{7}}{2} =-3\sqrt{7} $
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{7}}{2*1}=\frac{0+6\sqrt{7}}{2} =\frac{6\sqrt{7}}{2} =3\sqrt{7} $

See similar equations:

| 2/3×p-25=115 | | -87=3-6(k+8) | | (3x-15)°=(6x+6)° | | n^2-17=31 | | (3x-15)°+(6x+6)°=180 | | -6(8-2a)=-120 | | 5m+12=3m-12 | | 564-7.48x+0.029x^2=176 | | H=-2t^2+4 | | -16=n/2-20 | | (3x-4)°=125° | | 564-7.48x+0.029x^2=115 | | 2c+3=5c= | | 3x-4+125=90 | | –2y+10y=8y | | 2c+3=7c= | | 7-21x=-11 | | -1+4(8x+7)=5x+27 | | 3x-4=125° | | 1÷7x-5=80 | | 4a-7=6a+14 | | -12k=-24k | | -2.8+1.2x=-7+3+9x | | (5a+2)/(6a+-1)=0 | | 35^(1-2x)=7 | | −x+4=6 | | -11=1-3c | | 8x-12=18x=18 | | 2g+3=7g= | | 144-2x=12x | | 2e4=10 | | 9+x÷7=11-x |

Equations solver categories